Linice
A Linux Kernel Level Debugger

Version 2.6
www.linice.com

Author: Goran Devic
Contact email: author@linice.com

For the impatient, file README contains quick start instructions.

System Requirements

Linux PC/x86 platform
Minimum Pentium class CPU
Linux kernels2.4 or 2.6

Linice debugger has been developed on a number of Linux kernels, mainly on RedHat
distributions. It was tested on RedHat 9.0 and SuSE 8.0. It should also work with no
problems on some earlier versions of these distributions. Other distributions may work,
but are not tested. Y ou may have various successes with out-of-stock kernels or those
earlier than 2.4. Support for kernels 2.6 islimited: This Linice version will compile and
load under Debian 2.6 (astested). Other distributions may or may not work; in particular
FedoraCore2 will not work since its System.map file does not list some important
symbols. You may be able to have it running if you recompile the kernel with those
symbols exported. Linice should work with kernels 2.6.8 and below. Thework is
currently in progress to have integrated support for all 2.6 kernels, including the most
recent ones after 2.6.8. If you think you can contribute, send me an email or join the
discussion group at http://groups-beta.google.com/group/linice

Linice components

Linice consists of:

1) Linicekernel loadable module: kernel independent portion and kernel dependent
portion. Build a generic object from within the “linice” directory. Kernel
dependent loadable module is created by running a make within the “bin”
directory. Thisdirectory isasymboalic link to one of the kernel-specific
directories: bin-2.4 or bin-2.6

2) Linsym: User mode app that loads/ unloads Linice kernel module, generates and
mani pul ates symbol files.

3) Xice: Initiates a session on the X-Server with aloaded Linice.

Linice— A Linux Kernel Level Debugger
© 2000-2005 Goran Devic

Compiling Linice from the source

Initially, the complete package can be compiled by running “make_bin-2.4" or
“make_bin-2.6" from the build directory. Later, individua components can be compiled
by running “make” from within “linice”, “linsym” or “x” directories.

You will also need assembler NASM to successfully compile Linice. NASM is
enclosed within Linice distribution. It can be found in the subdirectory tools/nasm.

When done compiling individual components, follow the instructions below to complete
the kernel-dependent portion of the installation.

Compiling kernel-specific Linice code
1) After compiling kernel-independent code, it has to be linked with the iceface.c file
which contains your particular kernel interfaces. This step actually creates a Linux

loadable module for a particular kernel. Y ou may want to adjust some configuration
defines:

Modify ‘Makefile' to suit your environment:

Default: TARGET=
Configuration: Single CPU, non-APIC

By default, Linice builds for asingle CPU, non-APIC target machine.
If your machine has 10_APIC, you will need to add -DIO_APIC define.
If your machineis SMP, you will need to add -DSMP define.

Default: #PCIHDR = PCIHDR
Configuration: Include PCI header information file

Delete“#” in order to include the “pcihdr.h” file. Thisfile contains a database of PCI
devices. It isused by the PCI command to decode devices on a PCI bus. Inclusion of this
file will enlarge the module by about 300K.

2) Run ‘make” (for 2.4 builds) or “compile_2.6" (for 2.6 builds) in order to generate the
debugger module tailored to your running kernel.

3) Customize initialization file “linice.dat”
Specify the memory to be reserved for symbols, history buffer or display; change the
init string or macros, or set the different keyboard layout to customize it to your
particular locale. The default values are a good starting point and should work.

These keyboard layouts are supported:

us United States (default)
uk UK
finnish, finnish-latinl Finland
de, de-latinl Ger many
Linice— A Linux Kernel Level Debugger 2

© 2000-2005 Goran Devic

fr, fr-latinl
dk, dk-latinl

dvor ak

sg, sg-latinl
sf, sf-latinl
be

po

it

SwW

hu

j p106

pl

hr-cp852, hr-latin2
cz-gwerty, cz-qwertz

France

Denmar k

[Dvor ak keyboar d]
Switzerl and (Gernman)
Swi tzerl and (French)
Bel gi um

Por t uga

Italy

Sweden

Hungary

Japan

Pol and

Croatia / Hrvatska
Czech Republic

If you are not using US keyboard, it is necessary to let Linice know of a proper
keyboard layout since it does not use Linux code for keyboard handling.

Installing and running Linice
4) Usel i nsymto load and unload the Linice module:

Load and install Linice kernel module: “l i nsym —i ”

Unload Linice: “I i nsym —x”

Y ou have to use linsym to load (and unload) linice since it needs some initial values
that linsym provides which cannot be passed easily by manually using ‘insmod’. Also,
linsym reads the initialization file “linice.dat” and sends it to the module. It will
search for thisfile first in the current directory, and then in the /etc directory. If the
file could not be found at each of these locations, linsym will use default, built-in

settings.

Linsym also searches for the map of kernel symbols in the /boot/System.map. That
symbol map file has to match the running kernel! Thisis very important since linsym
reads some kernel addresses that help it to locate the code into which to place various
hooks (such is a keyboard hook or a pointer to the kernel module list.) If you have
recompiled your kernel and the current System.map is named differently, Linice may
refuse to load. In this case, use the option —m to specify the correct map file.

If you are calling linsym from anywhere other than the default linice/bin directory,
you have to define environment variable LINICE and set it with the path to that
directory, so the linsym knows where to find the debugger kernel module to load. As
example, if you installed (and rebuilt) linice in /usr/src/linice directory, you would do:
export LIN CE=/usr/src/Linicel/bin

Then, you will be ableto call linsym from any directory.

Linice— A Linux Kernel Level Debugger
© 2000-2005 Goran Devic

Y ou haveto be “root” in order to load or unload linice. If you intend to become aroot
by using the “su” command, remember to use the “su —*format (the dash option will
switch to the root environment variables).

5) Usel i nsymto trandate symbols
Trand ate debug information from a program or a module:
“li nsym —t <bi nary>"
Thiswill create a symbol file <binary>.SY M that can be |oaded.

6) Usel i nsymto load symbol file
Load symbol fileinto Linice: “I i nsym —s <synbol s. syn®”

7) Y ou may break into the Linice at any time by pressing the keyboard hotkey: “ Ctr|+Q”

Running in the X-Window

To have Linice pop up on the X-Window, you have to have it loaded using the standard
command “l i nsym —i ”. If you are already in the X environment, it might look as the
system froze since Linice actually popped up using the VGA frame buffer. Simply hit F5
(go) and you will get back the control on your terminal. Then simply run utility “xi ce”,
and the Linice should appear on the top of your X window.

Note: Linice supports most common linear frame buffersin 8, 16 and 32 bits per pixel
modes. If your current video mode is using a 24 bpp, switch it to one of the supported
pixel modes.

Compiling the debugee

Notes on compiling your code that you want to debug:

Y our program or module has to be compiled with the“ - gst abs+” switch in order to
generate symbolic information suitable for Linice translation.

To get the proper visibility into local symbols, you should not use the switch: “-fomit-
frame-pointer” since with that switch the local variable information will not be accessible.

It is recommended to disable code optimization.
To get the visibility into non-static, un-initialized global symbols, you need to use the

linker switch: “-dp” or “-d” or “-dc” to force the assignments of space for “common
symbols’.

Preparing the Linux kernel for source debugging
Thistext describes modifications to the kernel 2.4 build process.

Although you can run Linice on top of the unmodified kernel, if you need to do source
level debug on the kernel code, these steps should give you a general guidance on how to

Linice— A Linux Kernel Level Debugger 4
© 2000-2005 Goran Devic

prepare the kernel code and symbols. Y ou will need to rebuild the kernel in order to
generate necessary stabs info, which will be used by the symbol trandlator. Edit the Linux
kernel Makefile and insert the code in red/underline:

Linice needs stabs debugging information to be built with the Linux kernel.
Add “-gstabst+” to the CFLAGS and add “-gstabs’ to the AFLAGS:

CFLAGS : = -gstabs+ $(CPPFLAGS) -Wall -Wtrict-prototypes -Wo-trigraphs
-2 -fno-strict-aliasing -fno-comobn -Wo-unused
AFLAGS : = -gstabs -D__ASSEMBLY__ $(CPPFLAGS)

In order to be able to access local variables, remove the option -fomit-frame-pointer.

Next, we will make the default build generate an intermediate kernel version with all the
stabs information, then have them stripped for the version that we will be loading:

$(LD_VM.I NUX) $(LD VM.I NUX_KALLSYMS) -0 vmlinux.debug

$(STRIP) -S -0 vminux vrinux. debug

S(NM vminux | grep -v "\ (conpiled\)\|\(\.0$$\)\|[\([aw]
VIV NV ng$$\) V[V (LASH RLIDIV) ' | sort > System map

This modified Linux Makefile will now generate the file vmlinux.debug, which will be
used to generate the Linice symbol file. It will also generate aregular kernel code that
will be installed. Follow the standard kernel build procedure:

make nrproper

make xconfig or make nmenuconfig or make config
make dep

make cl ean

make bzl mage

HHHHH

v i nux. debug and vim i nux images are now built. v i nux isastripped version
of thevm i nux. debug.

make nodul es
make nodul es_install
make install

Trandatevm i nux. debug kernel symbolsinto Linice symbol file:
linsym -t vnlinux. debug

Add new kernel to the boot loader and reboot using it, so the new symbols will match the
running kernel when you load them into Linice.

A note about the serial connection

When you use a serial port and aVT100 terminal is connected to the other side of a serial
link (on another machine), the local keyboard may still be used as an active input device,

Linice— A Linux Kernel Level Debugger 5
© 2000-2005 Goran Devic

in addition to the input from aremote serial terminal. Although that behavior appears odd,
it helps to keep control when the connection parameters are not quite right.

Some Toshiba notebooks have a hidden serial port connector under the keyboard. It uses
anon-standard 1O port of Ox1EO. Linice supportsit and the port is enumerated as COM5.

Serial VT100 terminal output driver is expanded to support 24, 25, 48 or 50 lines (“lines’
command) with 80 or 132 columns (“width” command).

Bugs

Please send all bug reports to bugs@linice.com.

Include Linice version, the version of the kernel that you are running it on (or trying to
run it on), and any other information that would help reproduce the problem.

Debugging and developing Linice
If you are inclined to help out and work on Linice, please send me anote and | will try to
help you get going as best as | can.

Since all the sources are freely published, you are free to tinker with it. However, please
send me any modification that you feel would be useful to others, so | can add them to
the “official” package for everyone's benefit. Of course, you will be credited aswell ©.1
prefer getting the complete modified source files, so | can diff them (instead of getting
the usual diff files).

Features and wish list

If you would like to see afeature implemented or have other suggestion for improvement,
please email to features@linice.com.

USB Keyboard not supported

This limitation stems from the fact that Linice is handling keyboard at the low-level and
currently only knows how to handle a legacy PS/2 keyboard interface, and it does not
have a USB stack.

If you ssimply cannot plug in the PS/2 keyboard (which would solve this problem), and
you really have to use a USB keyboard, you will need to disable Linux support for all
USB devices. Thiswill alow the system BIOS to handle the USB keyboard so it will
appear to the software asif you have alegacy PS/2 keyboard. If you enable any USB
support in the Linux kernel, it will turn off SBIOS handling of the USB keyboard, and
Linice will not be able to handle it.

Linice— A Linux Kernel Level Debugger 6
© 2000-2005 Goran Devic

New commands and modified commands

Some of these commands are added and don’t exist on Softlce, and some are slightly
modified to enhance the functionality or to make them more appropriate for the Linux
environment.

ASCII
(new) Prints an ASCII character table

XWIN

(new) Redirect console to a DGA frame buffer (X-Window). This command will have
effect only after you have already initialized Linice’s X-Window driver by running xice
program and have Linice popped up once onto the display.

VAR

(new) Defines a user variable to be avalue or an expression. User variable can later be
used within any expression, at which timeit will be evaluated. Expressions and user
variables may be nested. Example:

varul=eax +1

var u2 = ul + ebx

?u2

CALL <function-address> (arguments)

(new) Invoke an arbitrary function. If the symbol table isloaded, and you are in the
context of a program or a module whose function you want to call, you can issue this call.
Optionally, you may pass a number of arguments to the function. (The syntax is strict in
that it requires you to type the enclosing “()” even if you don’t specify any function
parameters to prevent you from accidentally calling a function.)

Example: CALL funct (eax, 0)

Upon return, Linice displays the value of EAX register as the result of afunction call.
Calling arbitrary functions sometimes may have undesired side-effects. If you need to
preserve CPU registers, you may want to use the CPU [s | r] commands.

CPU[s|r]

(enhanced) CPU command normally dumps all CPU registers. The enhanced command
adds parameters “s’ and “r” which will save and r estore general purpose CPU registers
from an internal store.

For example, you may want to use this command to save registers before calling an
arbitrary function (viacommand CALL), so they can be restored after being modified by
acalled function.

Breakpoints

(enhanced) A new flag has been added to all types of breakpoints —a“one-time’
breakpoint flag, option “O” (aletter). When a breakpoint with this flag hits, that
breakpoint will be cleared (deleted).

Example: BPX o0 module! getkey

Linice— A Linux Kernel Level Debugger 7
© 2000-2005 Goran Devic

Expressions
Linice expression eva

uator provides full C-language operator precedence with a number

of operators and functions. The following are supported operators:

Il logical-OR @] parenthesis support
&& logical-AND [array index

== compare equality | bitwise-OR

I= compare inequality n bitwise-XOR
<< shift left & bitwise-AND
>> shift right < compare less
<= compare less or equal > compare greater
>= compare greater or equal % modulo

-> pointer operator ! logical-NOT
+-*/ math ~ bitwise-NOT

: selector: of fset

The following are the functions that can be called within any expression:

byte(..)
word(..)
dword(..)
hibyte(..)
hiword(..)
sword(..)

ptr(..)

truncates the argument into a byte size (8 bits)
truncates the argument into aword size (16 hits)
returns dword (32 bits)

returns high-order byte

returns the upper word of the argument (bits [31:16])
convert byte into asigned word

dereferences the argument assuming it is an address

The following functions do not take any arguments:

bpcount()
bpmiss()
bptotal ()
bpindex()
bplog()

DataAddr()
CodeAddr()
EAddr()
EValue()

returns the breakpoint instance count
breakpoint miss count

breakpoint total count

current breakpoint index number
breakpoint silent log

returns the address of the first data item displayed in the data window
returns the address of the first byte in the code window

returns the effective address of the current instruction

returns the current value associated with EAddr()

The following tokens return the state of the corresponding EFL AGS register bits:

CFL
PFL
AFL
ZFL
SFL
OFL
RFL
TFL
DFL
IFL
NTFL
IOPL
VMFL

carry flag

Parity flag
Auxiliary flag
Zero flag

Sign flag
Overflow flag
Resume flag
Trap flag
Direction flag
Interrupt flag
Nested Task Flag
IOPL level
Virtual Machine flag

Numbers are evaluated in the following order:

Linice— A Linux Kernel L
© 2000-2005 Goran Devic

evel Debugger

Hexadecimal isthe default radix for al numeric input and output except for
selected commands such is window size. Hex number can optionally be prefixed by “0x”.
Decimal number is specified by explicit prefix “+” or “-* (unary operator).

Binary number is specified with the prefix “0Ob” asin “0b1010".

Octal number is specified with the prefix “00” asin “003777".

The line number operator “.” also changes the default radix to decimal.

Character literal values ‘123’ evaluate as the ascii string of up to 4 characters.

Character constants such as ‘\123' the default radix is decimal unless the constant
startswith ‘\x’ asin ‘\xABC'.

CPU registers and variations: AL, AH, AX, EAX, etc.

Breakpoint address such is ‘ bp0’

Symbol specified using the name or modul e name formats.

User variablethat is going to be evaluated (see command VAR)

DOT-extension token implemented within the extension interface.

Not implemented commands

These commands are not (yet) ported from the Softlce®©:
A (Assemble code)

ADDR (Display/change address contexts)

BH (Breakpoint history)

BPINT (Breakpoint on interrupt)

DEVICE (Display info about a device)

GENINT (Generate an interrupt)

PAGEIN (Load a page)

PRN (Set printer output)

QUERY (Display a process virtual address space map)
SHOW (display from backtrace buffer)

SS (Search source module for string)

THREAD (Show thread information)

TRACE (Enter back trace simulation mode)

XG (Trace simulation)

XP (Step in trace ssimulation)

XRSET (Reset trace history buffer)

XT (Step in trace simulation)

XFRAME (Display active exception frames)

Implemented commands

SETTI NG BREAK PO NTS

BPM - Breakpoint on menory access

BPMB - Breakpoint on nenory access, byte size

BPMN - Breakpoint on nenory access, word size

BPMD - Breakpoint on nenory access, double word size

BPIO - Breakpoint on I/O port access

BPX - Breakpoi nt on execution

Linice— A Linux Kernel Level Debugger 9

© 2000-2005 Goran Devic

BSTAT - Breakpoint Statistics
MANI PULATI NG BREAK PO NTS

BPE - Edit breakpoint

BPT - Use breakpoint as a tenplate
BL - List current breakpoints

BC - Clear breakpoint

BD - Disabl e breakpoi nt

BE - Enabl e breakpoi nt

DI SPLAY/ CHANGE MEMORY

R - Display/change register contents
U - Un-assenbl es instructions

D - Display nenory

DB - Display menory, byte size

Dw - Display menory, word size

DD - Display menory, double word size
E - Edit nenory

EB - Edit nenory, byte size

EW - Edit nenory, word size

ED - Edit nenory, double word size
PEEK - Read from physical address

PEEKB - Read from physical address a byte
PEEKW - Read from physical address a word
PEEKD - Read from physical address a dword
POKE - Wite to physical address

POKEB - Wite to physical address a byte
POKEW - Wite to physical address a word
POKED - Wite to physical address a dword

H - Help on the specified function
HELP - Help on the specified function
? - Eval uate expression

VER - Linice version

WATCH - Add watch variable
FORMAT - Change format of data w ndow

DATA - Change data w ndow

Dl SPLAY SYSTEM | NFORVATI ON
GDT - Display gl obal descriptor table
LDT - Display local descriptor table
| DT - Display interrupt descriptor Table
TSS - Display task state segment
CPU - Display cpu register information
PCl - Display PCl device infornmation
MODULE - Display kernel nodule |ist
PAGE - Display page table informtion
PHYS - Display all virtual addresses for physical address
STACK - Display call stack
PROC - Display process infornmation
WHAT - ldentify the type of an expression

|/ O PORT COMIVANDS
- Input data from /O port
B - Input data froml1/O port, byte size
W - Input data froml/O port, word size
D - Input data from1/O port, double word size

0] - Qutput data to I/0O port

B - Qutput data to I/O port, byte size

ow - Qutput data to I/O port, word size

o - Qutput data to I/O port, double word size

FLOW CONTRCOL COMVANDS

Linice— A Linux Kernel Level Debugger
© 2000-2005 Goran Devic

X - Return to host debugger or program
G - Go to address
T - Single step one instruction
P - Step skipping calls, Int, etc.
HERE - Go to current cursor line
HALT - System APM O f
HBOOT - System boot (total reset)
MODE CONTRCL
| IHERE - Direct INT1 to LinlCE globally or kernel
I3HERE - Direct INT3 to LinlCE, globally or kernel
ZAP - Zap enbedded I NT1 or |NT3
FAULTS - Enabl e/disable LinlCE fault trapping
SET - Change an internal system variable
VAR - Change a user variable

CUSTOM ZATI ON COMVANDS

PAUSE
ALTKEY
FKEY
DEX
CCDE
COLOR
TABS

LI NES
W DTH
MACRO

UTILITY

S
E
M
C
ASClI |

Control s display scroll node

Set key sequence to invoke w ndow

Di spl ay/ set function keys

Di spl ay/ assi gn wi ndow dat a expressi ons

Di splay instruction bytes in code w ndow
Di spl ay/ set screen colors

Set/di splay tab settings

Set / di spl ay number of l|ines on screen
Set / di spl ay nunber of colums on screen
Define a nanmed macro comand

COMIVANDS

Search for data

Fill nmenory with data
Move data

Conpare two data bl ocks
Prints an ASCI| character table

LI NE EDI TOR KEY USACE

up - Recall previous conmand |ine

down - Recall next command |ine

right - Move cursor right

| eft - Move cursor |eft

BKSP - Back over |ast character

HOVE - Start of line

END - BEnd of l|ine

I NS - Toggl e insert node

DEL - Del ete character

ESC - Cancel current conmmand

W NDOW COMVANDS

WC - Toggl e code wi ndow

VD - Toggl e data wi ndow

WL - Toggl e | ocal s wi ndow

VR - Toggl e regi ster w ndow

W5 - Toggle call stack w ndow

WV - Toggle watch w ndow

EC - Enter/exit code w ndow

. - Locate current instruction

W NDOW CONTROL

VGA - Switch to a VGA text display

VDA - Switch to a MDA (Monochrome) text display
XW N - Redirect console to a DGA frane buffer
SERI AL - Redirect console to a serial term nal
CLS - Clear w ndow

Linice— A Linux Kernel Level Debugger
© 2000-2005 Goran Devic

only
only

RS - Restore program screen
ALTSCR - Change to alternate display
FLASH - Restore screen during P and T
SYMBOL/ SOURCE COMVANDS

SYM - Display synbols

EXP - Display exported synbols froma kernel or a nodule
SRC - Toggl e between source, m xed & code

TABLE - Sel ect/renmove synbol table

FILE - Change/display current source file

TYPES - List all types, or display type definition
LOCALS - Display locals currently in scope
SPECI AL OPERATORS
. - Preceding a decimal nunmber specifies a |ine nunber
@ - Preceding an address specifies indirection

Linice— A Linux Kernel Level Debugger
© 2000-2005 Goran Devic

12

Linsym — Symbol loader and translator

Thefollowing isalist of arguments supported by the | i nsymutility:

Option: --install

Short option: -i

Installs Linice debugger module and breaks. Optionally uses the environment variable
LINICE to get to the Linice *bin’ directory where the kernel moduleis.

Example: # | i nsym —i

Option: --map <System.map>

Short option: -m <System.map>

In order to successfully load Linice, Linsym needs a current System.map file, which it
will try to find at certain default locations (/boot/System.map, /boot/System.map-<kernel
name>). If you have a custom-compiled kernel, the current system map may be at a
different location, or may be even named differently. Use this option when loading Linice
to specify the correct path and name of that file.

Example:# | i nsym —m / boot/ System map-test -i

Option: --uninstall

Short option: -x

This option uninstalls Linice debugger module.
Example: # | i nsym —x

Option: --translate <program>

Short option: -t <program>

Trand ates debug symbols from your module, kernel or executable program and creates a
separate symbol file. This symbol file contains all the available stabs debug information
compiled and linked in with the target program: global and local symbols, source code,
type definition and other pertinent debugging information.

Example:# |i nsym —t nodul e. 0

Option: --output <alt_name.sym>

Short option: -0 <alt_name.sym>

Specifies dternate file name for the symbol file generated by the translation (option “-t”.)
Example:# | i nsym —t nodul e. o -0 synbol . sym

Option: --path <orig-path>:<new-path>

Short option: -p <orig-path>:<new-path>

Specifies path substitution for the source code. This option is useful when you are
building a symboal file from another computer, and the source code that you would
include resides on a different directory path. This option lets you substitute a path prefix.
Note that the two paths are separated by a colon: the first path is the path that will be

Linice— A Linux Kernel Level Debugger 13
© 2000-2005 Goran Devic

matched against all original absolute paths in the stabs debugging section (specifying the
path to the source), and the second path is the path to be used instead.
Example:# | i nsym —t nodule —p /usr/src/nmod:/ mt/usr/src/ nmod

Option: --sym <symbol.sym>

Short option: -s <symbol.sym>

Loads one or more symbol filesinto the running Linice. Y ou can load multiple symbol
files by separating them with acolon “:”. The names of symbol files usually end with the
“.sym”, which has to be specified as part of the file name. Thisisin contrast to the
“unload” command, which specifies the base name only.

Example: # | i nsym —s nodul e. sym

Option: --unload <symbol.sym>

Short option: -u <symbol>

Unloads one or more symbol files from the running Linice. Y ou can unload multiple
symbol files by separating them with a colon “:”. You can also unload symbol files from
within the Linice using the command “table”. The specified name is the name of the
symbol table aslisted in the Linice using the “table” command. (It is not the file name
which should be used when loading a symboal file.)

Example:# | i nsym —u nodul e

Option: --logfile [<filename>][,append]

Short option: -I [<filename>][,append]

Saves the content of the Linice history buffer (the command line window) into afile. You
can optionally provide afile name; if you don’t, the default file name “linice.log” will be
used. If thefile already exists, it will be truncated, unless you specified *,append” aso,
which will preserve the original content and append a new one.

Example:# |insym -l out. | og, append

Option: --verbose {0-3}

Short option: -v {0-3}

This option specifies the verbose level. The default is O, which is silent.

If Linice refusesto load, or if you encounter some other error, repeat the command with
the verbose level set to 3 and see if the message dump helps. If not, send me an emall
with the dump attached. The most common problem isincorrect system.map file (if you
have compiled a custom kernel), or /dev/ice not deleted.

Linice— A Linux Kernel Level Debugger 14
© 2000-2005 Goran Devic

Linice configuration file: linice.dat

Configuration file “linice.dat”, which has to reside either in the current directory, or in
the /etc directory, containsinitial parameters and switches used to initialize Linice
debugger. For most users, it should work just fine without any modifications.

Thisfileisatext file, and it is fully compatible with the Softlce version. This section
describes the parameter values that are used by Linice (the rest of the keywords are
ignored; they may be used in the future versions of Linice):

lowercase = [on | off]
Specifiesif the disassembly will be shown in uppercase or lowercase letters.

sym = <buffer in Kb>

Linice will reserve this much memory for all the symbol filesthat are to be loaded. Be
sureit islarge enough for your current set of symbol tables since it cannot be modified
without reloading the debugger.

hst = <buffer in Kb>

Specify the size of the history buffer (which is also known as command line buffer.) If
you intend to save this buffer to afile, you may want to give it alarger size.

macros = <number>
Number of keyboard macros that are going to be allocated.

drawsize = <buffer in Kb>

If you intend to use Linice on top of the X-Window, specify the value of this buffer to be

large enough to store the background frame buffer. The size of the buffer must be

sufficient to store the rectangular frame that is obscured by the Linice window. The exact
size depends on the current bits per pixel value as well as how many lines and what width

do you wish to display in Linice.

init = <init commands;>
Thisline specifies a set of Linice commands that will be executed immediately upon
Liniceload.

F1...F12 Function keys assighnment
SF1...SF12 Shift + Function keys assignment
AF1...AF12 Alt + Function keys assignment
CF1...CF12 Ctrl + Function keys assignment

Each key in these combinations may be assigned a command or set of commands.

Linice— A Linux Kernel Level Debugger
© 2000-2005 Goran Devic

15

layout = [country-code]

Specify the keyboard layout as a country code, which is described earlier. The default
layout is US.

Linice— A Linux Kernel Level Debugger
© 2000-2005 Goran Devic

16

Advanced Topics — Debugger Extensions

Linice debugger supports custom plug-ins, so-called “ dot-commands’ (since they are
typed after a dot/period on the command line).

Command: ? List all standard Linice commands
Command: .? List al registered custom dot commands
Command: .<cmd> Execute a registered dot command

Y ou can write a debugger extension that implements one or more dot-commands as a
kernel loadable module. There are 2 functions provided by Linice which are used to
register and unregister extension interface.

Please refer to the header file LiniceExt.h for the details of the interface. Thereisalso a
sample module to illustrate the function and capability of the interface. Y ou can compile
it and run it, or use it as a starting point for your own extensions.

int LiniceRegisterExtension(TLINICEEXT *pExt);

Use this function to register a debugger extension interface. It returns one of the error
codes specified in the LiniceExt.h header file. TLINICEEXT is a structure that describes
the interface and contains all the callback function pointers.

Thecaller isresponsibleto initialize these portions of the structure TLINICEEXT:

version
Set it to the macro LINICEEXTVERSION. Thisfield ismandatory. Liniceisusing it to
verify the correct and supported interface version.

size
Set it to the macro LINICEEXTSIZE. Thisfield is also mandatory.

pDotName

Set it to the ASCI1Z name of the dot command that you implement using this interface
structure. Thisfield is mandatory. Y our code may support a number of extensions, each
being represented by one TLINICEEXT structure.

pDotDescription

Thisfield isoptional. If not used, set it to NULL; otherwise, set it to the ASCIIZ string
with the description of the command. This string will be used when a user lists all dot
commands using the command “.?". The description helps by telling what the command
does, and serves no other purpose.

i nt (*Conmand) (char *pCommand) ;

Linice— A Linux Kernel Level Debugger 17
© 2000-2005 Goran Devic

Specify the address of your function which will be called when adot command is
invoked. This can be NULL, which would make sense only if you don’t intent to provide
acommand handler, but only afunction token handler (described below). Note that you
still need to provide pDotName string even if you don’t have a handler.

When this function gets called, argument pCommand points to the arguments of the
command, or the rest of the line.

Example: If you registered a command “dump”, and the user typed “.dump 1 2 3” on the
command line, pCommand would point to “ 1 2 3" (also note the space before“1”.)

void (*Notify)(int Notification);
Specify the address of your function which will be called on various debugger system
events. This can optionally be NULL if you don’t care about the events.

The debugger events (“Notification”) are:
PEXT_NOTI FY_ENTER - Linice got control. Break into debugee.
PEXT_NOTI FY_LEAVE - Linice rel eased control. Debugee continues to run.

int (*QueryToken) (int *pResult, char *pToken, int |en);

Specify the address of your function which will be called when an unknown token is
encountered within an expression. Y our extension may be able to help parsing
expressions and provide values to add-on functions or tokens.

These are the parameters sent by Linice: pToken points to the start of the expression
token, len specifies the suggested length of the token, and pResult points to a variable of
the type ‘int’ where you should store the resullt.

After you examine atoken (probably using afunction ‘strncmp()’ or similar), if you
detect that you don’'t handle it, simply return O.

If you do handle the token, store the final value in the * pResult and return the number of
characters to advance past the token size. This may or may not be the same value as
parameter len.

If the token isafunction, it is possible to recursively call the expression evaluator for the
function arguments in parenthesis. The sample extension module shows how to do it.

After the extension is successfully registered, Linicefillsin the pointersto some of
its utility functionsthat your module can call:

TLI NI CEREGS * (* Get Regs) (voi d);

Returns the address of the internal Linice structure that holds the CPU registers of the
program being debugged. This address will not change for the duration of Linice session.
Y ou can read and write CPU registers when the debugger is active.

int (*Eval)(int *pValue, char *pExpr, char **ppNext);

This function evaluates a string expression into a number. One possible use isto resolve
an expression that a user might have typed as arguments to your dot command.

Set pValue to where the result should be stored. Set pExpr to the expression string, and
set ppNext to the char* variable to receive the end of the evaluated string. (ppNext is
optional: if you don’'t care where the expression ended, set it to NULL. If you need to
parse multiple expressions that are given one after the other, then you may want to know
where the previous expression ended.)

Linice— A Linux Kernel Level Debugger 18
© 2000-2005 Goran Devic

On success, the function returns a non-zero value. On failure, the function returns 0,
pValueis not modified, and ppNext points to the character which caused the error.

int (*Disasm (char *pBuffer, int sel, int offset);

Disassemble aline of x86-code into your buffer from the given address. pBuffer needs to
be at least 80 characters long to store disassembled instruction. sel and offset define the
target address. If you specify O for sel, kernel CSwill be used instead.

int (*dprint)(char *format,...);

This function provides away to print out any message with variable number of arguments
into the Linice command buffer. It works similar to the standard “C” function printf(),
except that you should not use specia character for new line “\n”.

int (*Execute)(char *pCommand);
This function executes any command that you might aso be able to type on the command
line.

int (*Getch)(int fPolled);

Reads and returns a character from the input stream. Use this function for the interactive
option menus within the extension handler. Set fPolled to TRUE to have the function
wait until akey becomes available.

int (*MenVerify)(int sel, int offset, int size);

This function verifies that arange of memory addresses is present and accessible. When
it returns a nonzero value, you can access the memory range using your pointers. sel and
offset specify the start address, and len is the size of the memory range in bytes. If you
specify O for sel, kernel DS will be used instead.

void LiniceUnregisterExtension(TLINICEEXT *pExt);

Use this function to unregister previously registered interface. Be sure to call this
function before unloading your extension module, so the Linice stops calling it viathe
registered structure. Failure to do so will result in a crash.

Y ou have to unload al of your extension modules before you unload Linice, since the
modules are linked to Linice by the means of those two exported functions. Run the
Linux command “Ismod” to see the module dependency. Alternatively, list the registered
extensions with the Linice command “.?".

Be sure not to call any of the callbacks from the extension interface structure if the
registration failed.

Linice— A Linux Kernel Level Debugger 19
© 2000-2005 Goran Devic

